Advancing mm-Wave GaN Technology Through Innovative Modeling Approaches

Ph.D. Dissertation Defense by: **Rafael Perez Martinez** rafapm@alumni.stanford.edu

Advisor: Prof. Srabanti Chowdhury May 15th, 2024 Dept. of Electrical Engineering Stanford University, Stanford, CA 94305

GWBG Lab

Stanford ENGINEERING

Outline

- Introduction to GaN Technology
- Lending Derivative-Free Optimization to Device Modeling
- A Hybrid Physical ASM-HEMT Model
- Summary of Contributions

Ph.D. Dissertation Topic: Intersection of Multiple Fields

3

Gallium Nitride: Reshaping Technology and Society

Optoelectronics

LED Lightning

 μLEDs

Headlights

Lasers

Isamu Akasaki, Hiroshi Amano and Shuji Nakamura

2014 Nobel Prize in Physics

Power Electronics

Wall Chargers

Electric Grid

PV Inverters

EV Charging

RF Electronics (This work)

Wireless Communications

Electronic Warfare

Radar Technology

RF Spectrum: Wireless Applications (Beyond-5G)

Keysight, App. Note, 2024.

Key Device Metrics for mm-Wave Amplifiers

GaN Technology Addresses High-Performance Needs

GaN transistors provide high P_{out} & PAE at mm-wave frequencies

Properties of RF Semiconductors

Material Properties	Si	InP	GaAs	GaN
Bandgap, E _g (eV)	1.12	1.34	1.42	3.49
Critical Breakdown Field, E _{crit} (MV/cm)	0.3	0.5	0.4	3.3
Mobility, µ (cm² / V⋅s)	1500	5400	8500	2000*
Peak Saturation Velocity, v _{sat} (x10 ⁷ cm/s)	1	3.3	2.0	2.5
2DEG Density, n _s (x10 ¹³ cm ⁻²)	N/A	0.3	0.2	> 1.5
Thermal Conductivity, k (W/cm·K)	1.3	0.7	0.5	2
Dielectric Constant, ε _s	11.7	12.5	12.9	9.5
Johnson FoM Relative to Si $(E_{crit} \cdot v_{sat}/2\pi)$	1	5.8	2.7	28
*2DEG Mobility				

State-of-the-art f_T / f_{max} Performance Survey

Fundamental trade-off in f_T / f_{max} and breakdown voltage: "Johnson Limit"

K. Woo, M. Noshin, Z. Bian, R. P. Martinez et al., JPhys Materials, 2024.

Challenges Hindering GaN's Theoretical Limit

Electric-Field Crowding

R. P. Martinez, B. Murmann, and S. Chowdhury, IEEE TED, 2023.

Thermal Effects

S. Chowdhury, IEEE TMTT, 2024.

ADS Electrothermal

R. P. Martinez, S. Boyd, and S. Chowdhury, submitted.

R. P. Martinez, M. Iwamoto, and S. Chowdhury, *IEEE TMTT*, 2024. 9

Motivation: Addressing Two Major Challenges in GaN

- Improve <u>accuracy</u> and <u>reduce</u> <u>extraction time</u> in GaN models
 - Takes weeks to months to extract a device model
 - Some models are unable to capture the strong device nonlinearities

- <u>Optimize</u> P_{out}, PAE, linearity, and thermal at mm-wave
 - Devices are optimized for high f_{max} / P_{out}
 - Obtaining a good designs takes multiple iterations

Outline

- Introduction to GaN Technology
- Lending Derivative-Free Optimization to Device Modeling
- A Hybrid Physical ASM-HEMT Model
- Summary of Contributions

The Parameter Extraction Problem in Device Models

- Device model parameter extraction involves adjusting the parameters of a model to align with data from a semiconductor device
- Typical compact / TCAD device models do not have simple formulas
 - Given by running a SPICE / TCAD simulation and depends on 10s of parameters

Extracting the ASM-HEMT DC Model with 30+ Parameters

- Compact models represent mathematically the electrical behavior of semiconductor devices (primarily used for IC design)
- **ASM-HEMT:** Surface-potential-based physical compact model

Problem: Requires adjusting 30+ model parameters to fit the DC model

GaN Device Cross-Section

Manual Fitting: The 30-Year Norm in Parameter Extraction

- Typical approach for parameter extraction is extremely <u>time-consuming</u>
 - Takes several days or weeks, and does not guarantee a satisfactory fit
- Divide-and-conquer approach to parameter extraction

"SPICE Monkeying"

"SPICE Monkeying," DALL·E 3, OpenAI.

Levenberg-Marquardt Algorithm for Parameter Extraction

- Combines gradient descent with least squares to optimize parameters
- Gradients are difficult to obtain (require numerical approximations)
 - Requires knowing how a small change in each parameter affects the output
- Becomes inefficient with tens of model parameters
- Can get stuck in local minima of high-dimensional landscapes

Levenberg-Marquardt Iteration

minimize
$$\left\| f(\theta^{(k)}) + Df(\theta^{(k)})(\theta - \theta^{(k)}) \right\|^2 + \lambda^{(k)} \left\| \theta - \theta^{(k)} \right\|^2$$

$$\boldsymbol{\theta}^{(k+1)} = \boldsymbol{\theta}^{(k)} - \left(Df(\boldsymbol{\theta}^{(k)})^T Df(\boldsymbol{\theta}^{(k)}) + \boldsymbol{\lambda}^{(k)} I \right)^{-1} Df(\boldsymbol{\theta}^{(k)})^T f(\boldsymbol{\theta}^{(k)})^T d\boldsymbol{\theta}^{(k)} \right)^{-1} Df(\boldsymbol{\theta}^{(k)})^T d\boldsymbol{\theta}^{(k)} = \boldsymbol{\theta}^{(k)} - \left(Df(\boldsymbol{\theta}^{(k)})^T Df(\boldsymbol{\theta}^{(k)}) + \boldsymbol{\lambda}^{(k)} I \right)^{-1} Df(\boldsymbol{\theta}^{(k)})^T d\boldsymbol{\theta}^{(k)}$$

S. Boyd and L. Vandenberghe, Cambridge Univ. Press, 2018.

Prior Works Addressing This Issue Using Deep Learning

- Recent works have trained a neural network that takes simulated data as input and outputs the model parameters
- Challenges: <u>Extensive</u> simulations required, <u>precise parameter range</u> <u>knowledge</u> needed, and not resilient to outliers (measurement error)

M. -Y. Kao et al., *IEEE TED*, 2022. F. Chavez et al., *IEEE EDL*, 2023.

Q: How can we extract model parameters efficiently, without thousands of simulations, yet covering a broad range of possible values?

Proposed Solution: Derivative-Free Optimization

- Methods that approx. minimize a function <u>only using the objective value</u>
- Obtains a nearly optimal fit with <u>fewer</u> simulations than a full-grid search
- Performs well with 10's of parameters but less effective beyond 100+

How Does Derivative-Free Optimization Work?

- Explore: Sample broadly to identify promising parameter areas
- **Refine:** Focus on <u>top 20-30%</u> best-performing parameters
- Adapt: Gradually learn and adapt to distribution of most effective parameters
- Reevaluate: Use past results to test new parameters or optimize known ones

Proposed Approach for Parameter Extraction

- Addresses the limitations of manual fitting and deep learning approaches
 - Little to no human effort is required for extraction
- Reduces extraction time from <u>weeks / months</u> to <u>a few hours</u> (Intel i9-9900 CPU @ 3.1 GHz)
 - A "good fit" is obtained within a few thousand trials

"Monkey Using Good ML," DALL · E 3, OpenAI.

Choosing the Right Loss Function for Parameter Extraction

- Loss function selection is motivated by three device modeling issues:
- 1) Ensure <u>consistent model performance</u> across different orders of magnitude
- 2) Guide the optimization process to prioritize regions of particular interest
- 3) <u>Reduce sensitivity</u> to outliers and measurement errors

$$\begin{array}{ll} \mbox{minimize} & \frac{1}{k}\sum_{i=1}^k \mathcal{L}(\hat{y},y) \\ \mbox{subject to} & \theta\in\Theta \end{array}$$

$$\mathcal{L}_{\text{clip}}(\hat{y}, y) = \begin{cases} u^2 & \text{if } |u| \le \delta_i \\ \delta_i^2 & \text{if } |u| > \delta_i \end{cases}$$

$$u = \left| \log \left(1 + \frac{\hat{y}_i}{\epsilon_i} \right) - \log \left(1 + \frac{y_i}{\epsilon_i} \right) \right|$$

Importance of Relative Error in Device Modeling

- Want to fit model across a wide range of values (e.g., 10 µA to 100 mA)
- Absolute Error: Large values dominate while small values are ignored
- Relative Error: Uniform assessment across different scales of data

Prioritizing Key Operational Regions

- Guide optimization process by prioritizing key regions of interest while deprioritizing less critical areas (e.g., below noise floor)
- Modify loss function to target model fitting above a certain threshold

Robust Penalty Functions: Resiliency Against Outliers

- Robust penalty function "clips" any $|u| > \delta_i$ (treats them as outliers)
- Reduces overall sensitivity to outliers and measurement errors

Assessing Model Fit Through Train / Test Split

- Problem: Need to judge model fit when extracting tens of model parameters
 - Model should perform reliably across various I / V's and unseen bias conditions
- Consider a problem with 35 parameters and 35 measurements
 - Model shows improved training performance with more trials, but no improvement on test data beyond 30 trials

Diamond Schottky Diode Example

- Example of a diamond Schottky diode using the SPICE diode model
- Three parameters: n (ideality factor), I_s (saturation current), R_s (series resistance) - V = 0.48 to 2 V (ΔV_D = 400 mV): <u>39 measurements</u>
- An excellent fitting in < 250 trials, resulting in an error of 0.01 (for I > 10⁻¹⁰)

Diamond Schottky Diode Example: Robust to Outliers

- We intentionally corrupt 50% of the diode's measurements
- Comparing two loss functions: With and without penalty function
- Proposed loss function accurately fitted the model (0.756 vs. 0.011)

$$\mathcal{L}_{2,\epsilon}(\hat{y}, y) = \left| \log \left(1 + \frac{\hat{y}_i}{\epsilon_i} \right) - \log \left(1 + \frac{y_i}{\epsilon_i} \right) \right|^2$$

$$10^0 \quad \forall = 0.48 - 2 \forall$$

 $egin{array}{ccc} u^2 & ext{if } |u| \leq \delta_i \ \delta_i^2 & ext{if } |u| > \delta_i \end{array}$

 $\mathcal{L}_{ ext{clip}}(\hat{y},y)$

Modeling a 150 nm GaN High-Electron-Mobility Transistor

- High-performance 150 nm GaN HEMT process on a SiC substrate

 Primarily targets 5G and mm-wave applications (Ku, Ka, Q-band)
- Modeled Devices: $4x50 \mu m$ and $8x50 \mu m$ GaN HEMTs (L_G = 150 nm)

Special thanks to J. Xu for helping with NVNA measurements

4x50 µm GaN HEMT Example: Adjusting 35 Parameters

- Simultaneously adjusted 35 model parameters to fit ASM-HEMT DC Model $- V_D = 0$ to 20 V ($\Delta V_D = 0.1$ V), $V_G = -3$ to -0.1 V ($\Delta V_G = 0.1$ V): <u>6,030 measurements</u>
- Used a scalarizer (multi-obj. \rightarrow single-obj.): $\mathcal{L}_{total} = w_1 \mathcal{L}_{I_D} + w_2 \mathcal{L}_{g_m}$
- Excellent fit achieved in < 6,000 trials, resulting in an I_D error of 1.25e-3

R. P. Martinez, M. Iwamoto, S. Boyd, and S. Chowdhury, *IEEE Access*, 2024.

4x50 µm GaN HEMT Example: Adjusting 35 Parameters

- Simultaneously adjusted 35 model parameters to fit ASM-HEMT DC Model $- V_D = 0$ to 20 V ($\Delta V_D = 0.1$ V), $V_G = -3$ to -0.1 V ($\Delta V_G = 0.1$ V): <u>6,030 measurements</u>
- Excellent fit achieved in < 6,000 trials, resulting in a g_m error of 2.17e-3
- < 5% of simulations (<u>6k</u> vs. <u>120k</u>) required compared to DL approach

GaN HEMT Robust Example: Corrupting 25% of Data

- Repeated same extraction but now corrupted 25% of measurements
 - Corrupted data follows a normal (Gaussian) distribution with μ = 0 and σ = 10
- Robust loss function achieved good fit achieved in < 4,000 trials, while non-robust loss function resulted in a poor I_D fit (0.00127 vs. 0.325)

R. P. Martinez, M. Iwamoto, S. Boyd, and S. Chowdhury, *IEEE Access*, 2024.

Robust Pareto Design for GaN HEMT Sizing

Robust Pareto design methodology for sizing GaN HEMTs for PA applications, utilizing DFO to identify Pareto optimal designs

Outline

- Introduction to GaN Technology
- Lending Derivative-Free Optimization to Device Modeling
- A Hybrid Physical ASM-HEMT Model
- Summary of Contributions

ASM-HEMT Model Limitations for C-V Characteristics

- Problem: ASM-HEMT fails to capture CV non-linearities of the device
 - DFO and manual approaches are <u>unable</u> to fit measured CV curves
- Most results in the literature only show fitting at one V_D bias point
 - Nonlinear behavior in scaled HEMTs isn't modeled properly (in most models)

Accurate modeling of device nonlinearities results in improved prediction of S-parameters, AM-PM / IM distortion, ACPR / EVM

Solution: Enhancing the ASM-HEMT Model Framework

- Two-step approach to enhancing ASM-HEMT model framework:
 - 1) Find limitations where the model fails to capture complex nonlinear behavior
 - 2) <u>Compensate</u> for physical behavior not captured by ASM-HEMT framework

Nonlinear Junction Capacitances of 4x50 µm GaN HEMT

Modifying the ASM-HEMT Gate Charge Framework

- Overlap capacitances are treated as <u>constant</u> capacitances
- C_{gs}/C_{gd} formulation insufficient to model V_{DS} -dependent non-linearities
- **Hybrid:** We <u>compensate</u> for unmodeled nonlinear physical behavior by incorporating additional model parameters into ASM-HEMT framework

Hybrid ASM-HEMT Gate Charge Formulation

"Compensating" (Uses a Neural Network)

Modifying the ASM-HEMT Drain Charge Framework

- Overlap capacitances are treated as <u>constant</u> capacitances
- C_{ds} formulation insufficient to model V_{DS} -dependent non-linearities
- Hybrid: We <u>compensate</u> for unmodeled nonlinear physical behavior by incorporating additional model parameters into ASM-HEMT framework

Hybrid ASM-HEMT Drain Charge Formulation

(Uses a Neural Network)

Equivalent Circuit Model for Hybrid ASM-HEMT Model

- Intrinsic, extrinsic, and modified circuit elements in hybrid ASM-HEMT
- Modified circuit elements <u>compensate</u> for unmodeled physical behavior

Baseline Model Fails to Model Junction Capacitances

- Baseline Model: Unmodified model tailored to fit CV characteristics starting at V_{DS} = 0 V
- Unable to fit V_{DS}-dependence for all three CV curves (limited range)

Improved Capacitance Fitting Using Hybrid Approach

- Hybrid Model: Incorporates "compensating" circuit elements to fit capacitances through a neural network (6 hidden layers, 12 neurons)
- Fitting of capacitances improved greatly as a function of V_G and V_D

Improved Resistance Fitting Using Hybrid Approach

- Hybrid Model: Incorporates "compensating" circuit elements to fit resistances through a neural network (6 hidden layers, 12 neurons)
- Fitting of resistances improved greatly as a function of V_G and V_D

Set-up for S-parameter Modeling and Validation

Courtesy of M. Iwamoto (Keysight Technologies MML)

S-parameter Model Validation (100 MHz – 50 GHz)

 Good agreement between measured and simulated S-parameters $-V_{\rm D} = 5 - 25 \text{ V} (\Delta V_{\rm D} = 5 \text{ V}), V_{\rm G} = -2.2 \text{ to } -1 \text{ V} (\Delta V_{\rm G} = 0.2 \text{ V}), I_{\rm D} = 15 - 500 \text{ mA/mm}$

- Measured S

Set-up for Non-linear Validation (X-parameters + LP)

Special thanks to C. Gillease, M. Culver, A. Cognata, and M. Iwamoto

Large-Signal Non-linear Validation for 4x50 µm HEMT

- Hybrid model <u>accurately predicted</u> gain compression and PAE
- Baseline model resulted in a poor fit for gain compression
 - Baseline model confined to a <u>narrow</u> V_{DS} range due to existing limitations

Measured / Simulated Dynamic Load-Lines

- Dynamic load-lines <u>accurately predicted</u> by hybrid ASM-HEMT model
- Baseline model yields <u>poor results</u> due to poor fitting of capacitances

Assessment of Three Measurement-Based Models

 Previously extracted and validated <u>three</u> measurement-based models during two summer internships at Keysight Technologies

46

Outline

- Introduction to GaN Technology
- Lending Derivative-Free Optimization to Device Modeling
- A Hybrid Physical ASM-HEMT Model
- Summary of Contributions

Contributions of this Ph.D. to GaN Device Modeling

- Improved ASM-HEMT <u>accuracy</u> while greatly <u>reducing extraction time</u>
- Methods are model-agnostic: Applicable to Silicon & III-V technologies

Contributions of this Ph.D. to GaN Device Modeling

- Improved ASM-HEMT <u>accuracy</u> while greatly <u>reducing extraction time</u>
- Methods are model-agnostic: Applicable to Silicon & III-V technologies

Extraction Time / Complexity

Summary of Contributions

- Assessed the strengths and limitations of measurement-based models
- Proposed a new parameter extraction method based on derivative-free optimization along with a loss function
- Introduced a new hybrid approach in the ASM-HEMT model to improve fitting of non-linear capacitances and intrinsic resistances
- Improved standard ASM-HEMT model extraction flow by addressing its current limitations
- Introduced a robust Pareto design (multi-objective optimization) approach for selecting GaN HEMT designs in the context of 5G

All code developed for this presentation will be made available on GitHub under an open-source license to benefit the device modeling community

Journal Publications

 R. P. Martinez, M. Iwamoto, K. Woo, Z. Bian, R. Tinti, S. Boyd, and S. Chowdhury, "Compact Model Parameter Extraction via Derivative-Free Optimization," IEEE Access, vol. 12, pp. 123224-123235, Sep. 2024, doi: 10.1109/ACCESS.2024.3453198.
 R. P. Martinez, S. Boyd, and S. Chowdhury, "Robust Pareto Design of GaN HEMTs for Millimeter-Wave Applications," under review.

3) K. Woo, Z. Bian, M. Noshin, and **R. P. Martinez**, M. Malakoutian, B. Shankar, S. Chowdhury, "From wide to ultrawide-bandgap semiconductors for high power and high frequency electronic devices," *J. Phys.: Mater*, vol. 7, no. 2, pp. 022003, Mar. 2024, doi:10.10882515-7639ad218b.

4) **R. P. Martinez**, M. Iwamoto, J. Xu, C. Gillease, S. Cochran, M. Culver, A. Cognata, N. Wagner, P. Pahl, and S. Chowdhury, "Assessment and Comparison of Measurement-Based Large-Signal FET Models for GaN HEMTs," *IEEE Trans. Microw. Theory Techn.*, vol. 72, no. 5, pp. 2692-2703, May 2024, doi:10.1109/TMTT.2023.3349172.

5) H. Lu, M. Zhang, L. Yang, B. Hou, R. P. Martinez, M. Mi, J. Du, L. Deng, M. Wu, S. Chowdhury, X. Ma, Y. Hao, "A Review of GaN RF Devices and Power Amplifiers for 5G Communication Applications," *Fundam. Res.*, Nov. 2023, doi:10.1016/j.fmre.2023.11.005.
6) R. P. Martinez, D. J. Munzer, B. Shankar, B. Murmann, and S. Chowdhury, "Linearity Performance of Derivative Superposition in GaN HEMTs: A Device-to-Circuit Perspective," *IEEE Trans. Electron Devices*, vol. 70, no. 5, pp. 2247-2254, May 2023, doi:10.1109/TED.2023.3259383.

7) X. Y. Zhou, M. Malakoutian, R. Soman, Z. Bian, **R. P. Martinez**, and S. Chowdhury, "Impact of Diamond Passivation on fT and fmax of mm-wave N-polar GaN HEMTs," *IEEE Trans. Electron Devices*, vol. 69, no. 12, pp. 6650-6655, Dec. 2022, doi: 10.1109/TED.2022.3218612.

Conference Publications

1) **R. P. Martinez**, M. Iwamoto, A. B. Morgado, Y. Li, R. Tinti, J. Xu, E. Schmidt, Z. Song, N. Wagner, P. Pahl, A. Petr, and S. Chowdhury, "A Hybrid Physical ASM-HEMT Model Using a Neural Network-Based Methodology," in *Proc. IEEE BiCMOS Compound Semicond. Integr. Circuits Technol. Symp.*, Oct. 2024, pp. 38-41, doi: 10.1109/BCICTS59662.2024.10745660.

2) **R. P. Martinez**, M. Iwamoto, J. Xu, P. Pahl, and S. Chowdhury, "Benchmarking Measurement-Based Large-Signal FET Models for GaN HEMT Devices," in *Proc. IEEE Radio Freq. Integr. Circuits Symp. (RFIC)*, San Diego, CA, USA, 2023, pp. 1-4, doi: 10.1109/RFIC54547.2023.10186170.

3) B. Shankar, **R. P. Martinez**, P. Zuk, and S. Chowdhury, "A di/dt Triggered Self-Powered Unidirectional DC Circuit Breaker for both GaN and SiC platform for 400 V DC Applications," in *Proc. IEEE Energy Convers. Congr. Expo (ECCE)*, Detroit, MI, USA, 2022, pp. 1-4, doi: 10.1109/ECCE50734.2022.9947482.

4) B. Shankar, K. Zeng, B. Gunning, **R. P. Martinez**, C. Meng, J. Flicker, A. Binder, J. R. Dickerson, R. Kaplar, and S. Chowdhury, "Movement of Current Filaments and its Impact on Avalanche Robustness in Vertical GaN P-N diode Under UIS stress," in *Proc. 80th Device Res. Conf. (DRC)*, 2022, pp. 1-2, doi: 10.1109/DRC55272.2022.9855818.

5) B. Shankar, Z. Bian, K. Zeng, B. Gunning, C. Meng, **R. P. Martinez**, J. Flicker, A. Binder, J. R. Dickerson, R. Kaplar, and S. Chowdhury, "Study of Avalanche Behavior in 3 kV GaN Vertical P-N Diode Under UIS Stress for Edge-termination Optimization," in *Proc. IEEE Int. Rel. Phys. Symp. (IRPS)*, 2022, pp. 2B.2-1-2B.2-4, doi: 10.1109/IRPS48227.2022.9764525.

6) **R. P. Martinez**, D. J. Munzer, X. Zhou, B. Shankar, E. Schmidt, K. Wildnauer, B. Murmann, and S. Chowdhury, "Best Practices to Quantify Linearity Performance of GaN HEMTs for Power Amplifier Applications," *in Proc. IEEE 8th Workshop Wide Bandgap Power Devices Appl. (WiPDA*), 2021, pp. 259-262, doi: 10.1109/WiPDA49284.2021.9645120.

7) X. Zhou, **R. P. Martinez**, B. Shankar, and S. Chowdhury, "Design of Ka-Band Doherty Power Amplifier Using 0.15 μm GaN on SiC Process Based on Novel Complex Load Modulation," in *Proc. IEEE 8th Workshop Wide Bandgap Power Devices Appl. (WiPDA)*, 2021, pp. 259-262, doi: 10.1109/WiPDA49284.2021.9645125.

8) B. Shankar, K. Zeng, B. Gunning, K. J. Lee, **R. P. Martinez**, C. Meng, X. Zhou, J. Flicker, A. Binder, J. R. Dickerson, R. Kaplar, and S. Chowdhury, "On-Wafer Investigation of Avalanche Robustness in 1.3kV GaN-on-GaN P-N Diode Under Unclamped Inductive Switching Stress," in *Proc. IEEE 8th Workshop Wide Bandgap Power Devices Appl. (WiPDA)*, 2021, pp. 259-262, doi: 10.1109/WiPDA49284.2021.9645154.

Conference Publications / Oral and Poster Presentations

9) R. Kaplar, A. Allerman, A. Armstrong, ..., **R. P. Martinez**, K. Zeng, D. Ji, S. Chowdhury, O. Aktas, and J. Cooper, "Vertical GaN Power Electronics-Opportunities and Challenges," APS March Meeting, 2021.

10) R. Kaplar, A. Allerman, A. Armstrong, ..., **R. P. Martinez**, K. Zeng, D. Ji, S. Chowdhury, O. Aktas, and J. Cooper, "Development of High-Voltage Vertical GaN PN Diodes," *in IEDM Tech. Dig.*, San Francisco, CA, 2020, pp. 5.1.1-5.1.4, doi: 10.1109/IEDM13553.2020.9372079.

11) R. Kaplar, A. Allerman, B. Gunning, M. Crawford, G. Pickrell, A. Armstrong, ..., S. Chowdhury, K. Zeng, and **R. P. Martinez**, "Development of High-Voltage Vertical GaN PN Diodes," Virtual MRS Spring/Fall Meeting, 2020.

Oral and Poster Presentations

1) **R. P. Martinez**, M. Iwamoto, J. Xu, P. Pahl, and S. Chowdhury, "Benchmarking Measurement-Based Large-Signal FET Models for GaN HEMT Devices," Oral Presentation at 2023 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), San Diego, CA, USA, June 2023.

2) **R. P. Martinez**, B. Murmann, and S. Chowdhury, "Linearity Performance Metrics of GaN HEMTs" Invited talk at SystemX November Conference, Stanford, CA, USA, 2022.

3) **R. P. Martinez**, D. J. Munzer, X. Zhou, B. Shankar, E. Schmidt, K. Wildnauer, B. Murmann, and S. Chowdhury, "Best Practices to Quantify Linearity Performance of GaN HEMTs for Power Amplifier Applications," Oral Presentation at 2021 IEEE Workshop on Wide Bandgap Power Devices and Applications, Nov. 2021.

4) **R. P. Martinez**, D. J. Munzer, X. Zhou, B. Shankar, E. Schmidt, K. Wildnauer, B. Murmann, and S. Chowdhury, "Best Practices to Quantify Linearity Performance of GaN HEMTs for Power Amplifier Applications," Poster Presentation at SystemX November Conference, Stanford, CA, USA, 2021.

5) **R. P. Martinez** and S. Chowdhury, "RF Linearity of GaN HEMTs for Mm-Wave Applications," Oral Presentation at Spring Stanford-Nagoya Seminar (with Nobel Laureate: Prof. Hiroshi Amano), 2021.

6) **R. P. Martinez**, R. Soman, D. Ji, B. Ercan, K. Zeng, and S. Chowdhury, "Study of Wide Bandgap (GaN) Device Characterization and Modeling" Poster Presentation at SystemX November Conference, Stanford, CA, USA, 2019.

Acknowledgments (Funding Information)

- This work was funded by:
 - Stanford Graduate Fellowship in Science & Engineering
 - Dionisio Garza Medina Fellowship
 - Keysight Technologies through the Stanford SystemX Alliance

Acknowledgments: Ph.D. Quals & Defense Committee

Prof. Srabanti Chowdhury

Prof. Stephen Boyd

Dr. Masaya Iwamoto

Prof. Zerina Kapetanovic

Prof. Tsachy Weissman

Prof. Boris Murmann

Acknowledgments GWBG Lab @ Stanford University

Maliha Noshin Kelly Woo **Zhengliang Bian** Jackson Meng Seungbin Jeong Bhawani Shankar Ashley Jun Ana Banzer Morgado Jeongkyu Kim Rohith Soman Mohamad Malakoutian Ke Zeng Anna Kasperovich Xinyi Wen

Thomas Rodriguez Wiley Yu Jessica Huxel Junrui Lyu Janelle Mabrey Nish Sinha Hayao Kasai Xinyu Zhou Kwangjae Lee Jaeyi Chun Swaroop Kommera Yusuke Nakazato Reuben Recoder Chet Frost

Summary of Contributions

- 1) Assessed the strengths and limitations of measurement-based models
- 2) Proposed a new parameter extraction method based on derivative-free optimization along with a loss function
- 3) Introduced a new hybrid approach in the ASM-HEMT model to improve fitting of non-linear capacitances and intrinsic resistances
- 4) Improved standard ASM-HEMT model extraction flow by addressing its current limitations
- 5) Introduced a robust Pareto design (multi-objective optimization) approach for selecting GaN HEMT designs in the context of 5G

All code developed for this presentation will be made available on GitHub under an open-source license to benefit the device modeling community