Paper 1a.3

ENGINEERING

A Hybrid Physical ASM-HEMT Model Using a Neural Network-Based Methodology

<u>Rafael Perez Martinez</u>^{1,2}, Masaya Iwamoto³, Ana M. Banzer Morgado¹, Yiao Li³, Roberto Tinti⁴, Jianjun Xu³, Chad Gillease³, Steven Cochran³, Bhawani Shankar¹, Else-Marie Schmidt³, Zijian Song⁴, Natalie Wagner³, Philipp Pahl³, Alexander Petr⁴, and Srabanti Chowdhury¹

¹Department of Electrical Engineering, Stanford University, Stanford, CA USA ²Keysight Technologies Inc., Santa Clara, CA USA ³Keysight Technologies Inc., Santa Rosa, CA USA ⁴Keysight Technologies Inc., Calabasas, CA USA **Stanford**

Outline

- Motivation
- Hybrid Physical Modeling
- Model Extraction Flow
- Model Validation
- Summary

GaN Addresses High-Performance Needs

 GaN HEMTs provide high P_{out} & PAE at mm-wave frequencies

Properties of RF Semiconductors

Material Properties	Si	InP	GaAs	GaN
Bandgap, E _g (eV)	1.12	1.34	1.42	3.49
Critical Breakdown Field, E _{crit} (MV/cm)	0.3	0.5	0.4	3.3
Mobility, µ (cm²/ V⋅s)	1500	5400	8500	2000*
Peak Saturation Velocity, v _{sat} (x10 ⁷ cm/s)	1	3.3	2.0	2.5
2DEG Density, n _s (x10 ¹³ cm ⁻²)	N/A	0.3	0.2	> 1.5
Thermal Conductivity, k (W/cm·K)	1.3	0.7	0.5	2
Dielectric Constant, ϵ_s	11.7	12.5	12.9	9.5
Johnson FoM Relative to Si (E _{crit} ·v _{sat} /2π)	1	5.8	2.7	28
*2DEG Mobility				

RF GaN Market Forecast

BCICTO

2024

10/28/24

Measurement vs. Physics-Based Models

- Two prevalent modeling schemes at opposite ends of the spectrum
- Various trade-offs: None satisfy a modeling engineer's ideal wish list is

Key Features	Measurement-Based	Physics-Based	
CMC approved	X	\checkmark	
Good physical behavior outside extraction range	X	\checkmark	
Geometry Scalable	~	\checkmark	
Fast extraction / training time	~	~	
Early availability during process development	\checkmark	X	
Does not require process information	\checkmark	X	
One-size-fit-all modeling solution	\checkmark	X	

Hybrid Physical Modeling Methodology

The Advanced SPICE Model for HEMTs

- **ASM-HEMT:** Surface-potential-based physical compact model
- Model effectively captures a range of device non-idealities:
 - Self-heating, mobility degradation, DIBL, velocity saturation, trapping, etc.

Model Limitations for C-V Characteristics

- Problem: ASM-HEMT fails to capture CV non-linearities of the device
 - Unable to fit measured CV curves using various approaches
- Most results in the literature only show fitting at one V_D bias point
 - Nonlinear behavior in HEMTs isn't modeled properly (in most models)

Modifying the Gate Charge Framework

- Overlap capacitances are treated as <u>constant</u> capacitances
- C_{gs}/C_{gd} formulation <u>insufficient</u> to model V_{DS}-dependent non-linearities
- Hybrid: We <u>compensate</u> for unmodeled nonlinear physical behavior by incorporating additional model parameters into ASM-HEMT framework

"Compensating" (Uses a Neural Network)

Implemented through Verilog-A

Modifying the Drain Charge Framework

Slide 9

- Overlap capacitances are treated as <u>constant</u> capacitances
- C_{ds} formulation <u>insufficient</u> to model V_{DS}-dependent non-linearities
- Hybrid: We <u>compensate</u> for unmodeled nonlinear physical behavior by incorporating additional model parameters into ASM-HEMT framework

Hybrid ASM-HEMT Drain Charge Formulation

Implemented through Verilog-A

Hybrid ASM-HEMT Model Equivalent Circuit

G R_{g2} R_{g1} **Extrinsic Parasitic Elements**

Hybrid ASM-HEMT Model Equivalent Circuit

gdman

BCICTS 2024 | OCTOBER 27-30, 2024 | FORT LAUDERDALE, FLORIDA, USA 10/28/24

RGATEMOD = 1

Hybrid ASM-HEMT Model Equivalent Circuit Cgd,NN varies Cgd

10/28/24 BCICTS 2024 | OCTOBER 27-30, 2024 | FORT LAUDERDALE, FLORIDA, USA

BCICT

2024

Hybrid ASM-HEMT Model Equivalent Circuit

10/28/24 BCICTS 2024 | OCTOBER 27-30, 2024 | FORT LAUDERDALE, FLORIDA, USA

BCICT

Hybrid ASM-HEMT Model Equivalent Circuit

10/28/24 BCICTS 2024 | OCTOBER 27-30, 2024 | FORT LAUDERDALE, FLORIDA, USA

BCIC7

Modeling a 150-nm GaN HEMT

CIC

Slide 15

- High-performance GaN HEMT process on a SiC substrate
 - Primarily targets 5G and mm-wave applications (Ku, Ka, Q-band)
- **Device Geometry:** $4x50 \mu m$ GaN HEMT ($L_G = 150 nm$)

DC Characteristics & NVNA Data

150 1400 $W_{c} = 8 \times 50 \ \mu m$ 125 100 25 25 25 25 1200 (mM/mm) = 100 MHz Г_{тах} 1000 $W_G = 4x50 \ \mu m$ 800 $V_{D} = 20 V$ 600 __ 400 fт 200 С 375 125 250 500 0 0 20 40 60 10 30 50 0 I_{D} (mA/mm) $V_{D}(V)$ R. P. Martinez et al., IEEE TMTT, 2024.

BCICTS 2024 | OCTOBER 27-30, 2024 | FORT LAUDERDALE, FLORIDA, USA

Small-Signal Metrics

10/28/24

Extracting the ASM-HEMT DC Model

- Divide the parameter set into smaller subsets
- 2) Extract the DC model via derivative-free optimization (no manual efforts)

10/28/24

Manual Extraction Flow

Extract V_{off} and subthreshold

slope parameters for the low current region

Extract mobility and vertical

field dependence parameters for the high current region

2024

ine-tune

mA/mm 440 ASM HEMT 220100

-2.5

 $V_{\rm D} = 0.1 - 20.1 \, {\rm V}$

-3

15

10

V_D (V)

20

1100

 $V_{\rm G} = -2.9$ to -0.1 V

5

()

10/28/24

Reduce extraction time from weeks to hours!

500

Extracting the ASM-HEMT DC Model

Slide 17

R. P. Martinez et al., IEEE Access. 2024. BCICTS 2024 | OCTOBER 27-30, 2024 | FORT LAUDERDALE, FLORIDA, USA

 V_{G} (V)

-1.5

Measurements Needed for Hybrid Model

Slide 18

- S-parameters were measured for a wide range of bias conditions - $V_D = 0 - 30 V (\Delta V_D = 200 \text{ mV})$, $V_G = -5 \text{ to } -1 V (\Delta V_G = 100 \text{ mV})$ at f = 10 GHz
- Dataset used to extract model parameters in the hybrid model

Nonlinear Junction Capacitances of 4x50 µm GaN HEMT

10/28/24

Obtaining Training Data for Hybrid Model

• Logical sequence was established: $C_{GD} \rightarrow C_{GS} \rightarrow C_{DS}$

• Minimize relative error at each bias using Levenberg-Marquardt:

Neural Network Training for Hybrid Model

- Neural network predicts hybrid model parameter at each bias
 - Incorporated in Verilog-A model (replaces constant model parameter)
 - 6 hidden layers, 12 neurons each; Root Mean Square Error as loss function
- Keysight's ANN Toolkit in IC-CAP is used to train neural network

10/28/24

Neural Network Output for Hybrid Model

- Extracted capacitance model parameters that minimize error between simulated and measured C-V characteristics
- Neural network output shows good agreement as a function of bias

10/28/24

Baseline Model Fails to Model Capacitances

- Baseline Model: Unmodified model tailored to fit CV characteristics starting at $V_{DS} = 0 V$
- Unable to fit V_{DS}-dependence for all three CV curves (limited range)

10/28/24

Improved Fitting Using Hybrid Approach

- Hybrid Model: Incorporates "compensating" circuit elements to fit capacitances through a neural network (6 hidden layers, 12 neurons)
- Fitting of capacitances improved greatly as a function of V_{G} and V_{D}

Improved Fitting Using Hybrid Approach

- Hybrid Model: Incorporates "compensating" circuit elements to fit resistances through a neural network (6 hidden layers, 12 neurons)
- Fitting of resistances improved greatly as a function of V_G and V_D

S-parameter Model Validation

Mismatch between measured and simulated S-parameters

- V_D = 5 – 25 V (Δ V_D = 5 V), V_G = -2.2 to -1 V (Δ V_G = 0.2 V), I_D = <u>15 – 500 mA/mm</u>

10/28/24 BCICTS 2024 | OCTOBER 27-30, 2024 | FORT LAUDERDALE, FLORIDA, USA

2024

S-parameter Model Validation

• Good agreement between measured and simulated S-parameters - $V_D = 5 - 25 V (\Delta V_D = 5 V), V_G = -2.2 \text{ to } -1 V (\Delta V_G = 0.2 V), I_D = 15 - 500 \text{ mA/mm}$

10/28/24 BCICTS 2024 | OCTOBER 27-30, 2024 | FORT LAUDERDALE, FLORIDA, USA

2024

Set-up for Non-linear Validation

Large-Signal Non-linear Validation

Slide 28

- Hybrid model <u>accurately predicted</u> gain compression and PAE
- Baseline model resulted in a poor fit for gain compression
 - Baseline model confined to a <u>narrow</u> V_{DS} range due to existing limitations

Dynamic Load-Line Validation

- Dynamic load-lines <u>accurately predicted</u> by hybrid ASM-HEMT model
- Baseline model yields <u>poor results</u> due to poor fitting of capacitances

10/28/24 BCICTS 2024 | OCTOBER 27-30, 2024 | FORT LAUDERDALE, FLORIDA, USA

2024

Summary

- Introduced GaN technology and modeling schemes
- Evaluated strengths and limitations of measurement and physics-based models
- Proposed hybrid physical approach using ASM-HEMT model to improve fitting of capacitances and resistances
- Model validated against S-parameters, X-parameters, and dynamic load lines

Code and detailed documentation to be available in IC-CAP 2025 to benefit the device modeling community