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• Motivation

• Hybrid Physical Modeling 

• Model Extraction Flow

• Model Validation 

• Summary



GaN Addresses High-Performance Needs
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• GaN HEMTs provide high Pout & PAE 

at mm-wave frequencies
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Measurement vs. Physics-Based Models
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Key Features Measurement-Based Physics-Based

CMC approved X ✓

Good physical behavior outside extraction range X ✓

Geometry Scalable ~ ✓

Fast extraction / training time ~ ~

Early availability during process development ✓ X

Does not require process information ✓ X

One-size-fit-all modeling solution ✓ X

• Two prevalent modeling schemes at opposite ends of the spectrum

• Various trade-offs: None satisfy a modeling engineer’s ideal wish list 



Hybrid Physical Modeling Methodology
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Hybrid Model:

• Combine physical 
model with neural 
networks

• Maintains physics 

with increased 

accuracy

Physical

Model

• Captures basic device physics

• Show good physical responses when simulated 
beyond the measurement range

ANN

Model

• Early availability during process development

• Can fit complex nonlinear measured data

• Short model development time for new 

technologies
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The Advanced SPICE Model for HEMTs
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• ASM-HEMT: Surface-potential-based physical compact model 

• Model effectively captures a range of device non-idealities: 

– Self-heating, mobility degradation, DIBL, velocity saturation, trapping, etc.

ASM-HEMT Equivalent Circuit ModelGaN Device Cross-Section

200+ model parameters 



Model Limitations for C-V Characteristics
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• Problem: ASM-HEMT fails to capture CV non-linearities of the device

– Unable to fit measured CV curves using various approaches

• Most results in the literature only show fitting at one VD bias point

– Nonlinear behavior in HEMTs isn’t modeled properly (in most models)



Modifying the Gate Charge Framework
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• Overlap capacitances are treated as constant capacitances

• Cgs/Cgd formulation insufficient to model VDS-dependent non-linearities

• Hybrid: We compensate for unmodeled nonlinear physical behavior by 

incorporating additional model parameters into ASM-HEMT framework

Implemented through Verilog-A

Hybrid ASM-HEMT Gate Charge Formulation

“Compensating” (Uses a Neural Network)



Modifying the Drain Charge Framework
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• Overlap capacitances are treated as constant capacitances

• Cds formulation insufficient to model VDS-dependent non-linearities

• Hybrid: We compensate for unmodeled nonlinear physical behavior by 

incorporating additional model parameters into ASM-HEMT framework

Hybrid ASM-HEMT Drain Charge Formulation

Implemented through Verilog-A



Hybrid ASM-HEMT Model Equivalent Circuit
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Hybrid ASM-HEMT Model Equivalent Circuit
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Hybrid ASM-HEMT Model Equivalent Circuit
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Hybrid ASM-HEMT Model Equivalent Circuit
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Hybrid ASM-HEMT Model Equivalent Circuit
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WG = 8x50 μm
f = 100 MHz

Modeling a 150-nm GaN HEMT
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• High-performance GaN HEMT process on a SiC substrate 

– Primarily targets 5G and mm-wave applications (Ku, Ka, Q-band)

• Device Geometry: 4x50 µm GaN HEMT (LG = 150 nm)

DC Characteristics & NVNA Data Small-Signal Metrics

R. P. Martinez et al., IEEE TMTT, 2024.

WG = 8x50 µm
f = 100 MHz
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Extract Voff and subthreshold 

slope parameters for the 

low current region

Extract mobility and vertical 

field dependence parameters

for the high current region

Extract DIBL, subthreshold 

degradation parameters for 

the high VD region

Extract vsat, output 

conductance parameters for 

the high ID and VD regions

Fine-tune parameters to 

improve ID-VD fitting
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Extracting the ASM-HEMT DC Model
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1) Follow the manual flow of ASM-HEMT

RF extraction package in IC-CAP (this work)

– Divide the parameter set into smaller subsets

2) Extract the DC model via derivative-free 

optimization (no manual efforts)

Manual Extraction Flow

S. A. Ahsan et al., IEEE JEDS, 2017.



Extracting the ASM-HEMT DC Model
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1) Follow the manual flow of ASM-HEMT

RF extraction package in IC-CAP

2) Extract the DC model via derivative-free 

optimization (no manual efforts)

– Reduce extraction time from weeks to hours!

Automatic Extraction Flow

R. P. Martinez et al., IEEE Access, 2024.

Set

Parameters

Evaluate 

Objective

Run Sim.

HPO

Perform train-test split

Set loss functions and ranges 

for model parameters

No

Re-train using all data

Yes

Is performance 

satisfactory?

Check model extraction 

against test data



Measurements Needed for Hybrid Model 
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•  S-parameters were measured for a wide range of bias conditions
–  VD = 0 − 30 V (∆VD = 200 mV) , VG = −5 to −1 V (∆VG = 100 mV) at f = 10 GHz

•  Dataset used to extract model parameters in the hybrid model

Nonlinear Junction Capacitances of 4x50 μm GaN HEMT

Cgs Cgd Cds



Obtaining Training Data for Hybrid Model
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• Goal: Identify best model parameter value that aligns simulated

results with measured device characteristics at each bias condition

• Logical sequence was established: CGD → CGS → CDS  

VDS (V)

• Minimize relative error at each bias 

using Levenberg-Marquardt:



Neural Network Training for Hybrid Model  
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CNN(VGS,VDS)
VGS

VDS

• Neural network predicts hybrid model parameter at each bias

– Incorporated in Verilog-A model (replaces constant model parameter)

– 6 hidden layers, 12 neurons each; Root Mean Square Error as loss function

• Keysight’s ANN Toolkit in IC-CAP is used to train neural network



Neural Network Output for Hybrid Model
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• Extracted capacitance model parameters that minimize error

between simulated and measured C-V characteristics

• Neural network output shows good agreement as a function of bias



Baseline Model Fails to Model Capacitances
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• Baseline Model: Unmodified model tailored to fit CV characteristics 

starting at VDS = 0 V

• Unable to fit VDS-dependence for all three CV curves (limited range)



Improved Fitting Using Hybrid Approach
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• Hybrid Model: Incorporates “compensating” circuit elements to fit

capacitances through a neural network (6 hidden layers, 12 neurons)

• Fitting of capacitances improved greatly as a function of VG and VD



Improved Fitting Using Hybrid Approach
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• Hybrid Model: Incorporates “compensating” circuit elements to fit

resistances through a neural network (6 hidden layers, 12 neurons)

• Fitting of resistances improved greatly as a function of VG and VD



S-parameter Model Validation
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• Mismatch between measured and simulated S-parameters

– VD = 5 – 25 V (ΔVD = 5 V), VG = -2.2 to -1 V (ΔVG = 0.2 V), ID = 15 – 500 mA/mm

(100 MHz – 50 GHz)

Baseline ASM-HEMT



• Good agreement between measured and simulated S-parameters

– VD = 5 – 25 V (ΔVD = 5 V), VG = -2.2 to -1 V (ΔVG = 0.2 V), ID = 15 – 500 mA/mm

S-parameter Model Validation
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(100 MHz – 50 GHz)

Hybrid ASM-HEMT
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Set-up for Non-linear Validation
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• Fundamental load-tuner and NVNA 

set measurement frequency range

• Driver amplifier + isolator limit how 

much power we can present to the DUT

R. P. Martinez et al., IEEE TMTT, 2024.
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Large-Signal Non-linear Validation
• Hybrid model accurately predicted gain compression and PAE

• Baseline model resulted in a poor fit for gain compression 

– Baseline model confined to a narrow VDS range due to existing limitations



Dynamic Load-Line Validation
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• Dynamic load-lines accurately predicted by hybrid ASM-HEMT model

• Baseline model yields poor results due to poor fitting of capacitances



Summary
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Code and detailed documentation to be available in IC-CAP 2025 

to benefit the device modeling community

• Introduced GaN technology and modeling schemes

• Evaluated strengths and limitations of measurement and 

physics-based models

• Proposed hybrid physical approach using ASM-HEMT model 

to improve fitting of capacitances and resistances

• Model validated against S-parameters, X-parameters, and 

dynamic load lines
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